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Abstract The evolution of international regulation leads to new capital requirements
imposed on globally active companies. Financial services firms allocate capital to
business lines in order to withstand the materializing credit losses and to measure the
performance of various business lines. In this study, we introduce a methodology for
optimal credit capital allocation based on operations research approach. In particular,
we focus on the efficient allocation of capital to business lines characterized by credit
risk losses and cost of capital. We compare different allocation methods and provide
a rationale behind using the OR approach. Finally, we formulate a multiobjective
optimization model to capital allocation problem and apply it to a real-world case of
two financial conglomerates.

Keywords Risk management - Capital allocation - Multiobjective optimization -
Cost of capital - OR in banking

1 Introduction

With the introduction of Basel III, globally active financial institutions are required to
strengthen their loss absorbing capital with the aim to decrease the systemic risk of the
entire banking sector. This international standard has been coined by the Basel Com-
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mittee on Banking Supervision (BCBS). As the 2008-2012 financial crisis showed,
banks were not adequately capitalized to deal with the cascading effects of the global
financial meltdown. The focus of regulators has shifted towards increasing the banks’
capital levels and introducing more transparency into the Tier 1 capital calculations
(BCBSa 2011). Moreover, the postulates of the reduction of procyclicality and pro-
moting countercyclical buffers introduce new requirements on the usage of available
capital. The regulators are actively designing stringent capital rules for financial con-
glomerates and have taken steps towards the standardization of the economic capital
calculations (BCBSb 2009). The policy enables banks to choose their internal method
for calculating risk in terms of economic capital, which results in the flexibility of
choice, but also in the difficulties in implementation of “best practices.” A combi-
nation of the available Tier 1 capital (risk capacity) and the economic capital (risk
exposure) calculations naturally leads to a discussion on the sound methods for opti-
mal allocation of capital to the various risk types and business lines (BLs). On the one
hand, the currently used methods for capital allocation are often not sufficiently sophis-
ticated to capture all dependencies across the risk types and the changing complexity
of today’s businesses. On the other hand, the literature on the efficient and optimal cap-
ital allocation in practice is scarce. Banks need to optimize capital allocation not only
to conform to international regulatory guidelines, but also to manage the capital con-
sumption related to certain business activities. In particular, it is important to decouple
the institution-wide capital allocation and the capital allocation to different BLs, as
each of them represents different business and is characterized by a BL-specific cost of
capital. Naturally, this topic becomes one of high importance both from the researchers’
and practitioners’ perspectives as it is relevant for risk managers, policy makers and
regulators around the globe. However, due to the lack of industry standards and various
challenges with technical implementation, no “best practice” exists up to date.

Optimal capital allocation belongs to a wide class of decision problems under uncer-
tainty that in finance, supply chain management, project and portfolio management
or energy production are solved by stochastic programming methods. These methods
are well established in operations research and include linear and nonlinear stochastic
optimization problems, with large numbers of scenarios and dynamic stochastic opti-
mization. In this article, we propose that combining methodologies from finance and
operations research is a promising approach to the design of a new international indus-
try standard. The aim of our research is to extend the view of the optimal capital alloca-
tion problems to a more general class of multiobjective resource allocation problems.

The novelty of our study lies in the consideration of the cost of credit capital
allocated to the BLs. This leads to a bi-objective formulation of the capital allocation
problem which may lead to conflicting solutions. Furthermore, we provide analytical
solutions of the allocation problem by using both the geometric arguments and by
applying Lagrange multipliers. Finally, as opposed to other (purely theoretical) studies,
we test our model with real-world data in order to make our method more accessible
to practitioners.

The remainder of this article is organized as follows. In Sect. 2 we present the
relevant literature. In Sect. 3 we provide an overview of the existing methods for
optimal capital allocation. In Sect. 4 we elaborate on the analytical properties of the
model. Then, in Sect. 5 we describe the dataused in simulations, we analyze the model
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specifications and discuss the results. Section 6 concludes and suggests future research
paths.

2 Literature review

In the traditional finance literature, capital allocation problems are mainly studied in
applications to insurance and banking industries. While insurance-related research
provides a thorough theoretical underpinning of the underlying concepts, research on
banking has focused more on the applications in practice and on the development of
international regulatory guidelines. A large body of literature focuses on the propor-
tional allocation of capital to the corresponding BLs (Lin et al. 2013). The main appli-
cation areas of the capital allocation methods are in risk measurement, risk appetite
estimation and performance-based capital allocation. The first line of research is well
represented by the work of Cummins (2000) where the author provides an overview
of the various techniques for allocating equity capital to several BLs of the insurance
companies. In terms of coherent risk measures Denault (2001) and Kalkbrener (2005)
propose an axiomatic system for capital allocation and analyze popular risk measures
in the financial industry. A breakthrough paper for calculating capital allocation in the
actuarial science is the work of Myers and Read (2001). Tasche (2004) provides an
economically meaningful method of internal capital allocation based on Euler princi-
ples. The gradient allocation principle is further studied in the context of coherent risk
measures and coherent capital allocation by Buch and Dorfleitner (2008). Mausser and
Rosen (2007) provide an overview of the measurement methods of economic credit
capital and their application to capital allocation. A unifying approach to the optimal
capital allocation methods is presented by Dhaene et al. (2012). The article provides
an extensive discussion of the existing methods for capital allocation and proposes
a new approach formulated as an optimum allocation problem. Several authors have
recently suggested variations of the optimum allocation problem. For instance, Xu
and Hu (2012) study capital allocations via stochastic comparisons in the general loss
function scenarios. In another article, Xu and Mao (2013) introduce a new capital
allocation rule based on the tail mean-variance principle.

In operations research, optimum allocation problems have been studied for a long
time and cover a wide array of topics ranging from finance, logistics, production eco-
nomics, search theory to inventory models (Steuer and Na 2003; Patriksson 2008). For
instance, the optimal configuration of a production and distribution network subject
to operational and financial constraints has been studied by Basso and Peccati (2001).
A mixed integer linear programming (MILP) model is proposed to describe the opti-
mization problem. By using the MILP algorithm (Tsiakis and Papageorgiou 2008)
solve optimal production allocation problems in supply chain networks. Financial
constraints include production costs, transportation costs and duties for the mater-
ial flowing within the network subject to exchange rates. Another area of optimal
allocation problems that is well represented in the literature copes with the portfo-
lio optimization methods (Kolm et al. 2014). For instance, Li et al. (2013) propose
a_model for allocating the systematic risk in portfolio optimization, while Fonseca
and Rustem (2012) develop a robust optimization method for international portfolio
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management and introduce a tractable semidefinite programming formulation of the
model. Homburg and Scherpereel (2008) present a novel approach to allocate the cost
of risk capital in decentralized organizations. The authors elaborate on fair risk capital
allocation schemes from a behavioral perspective. In terms of the dynamics of optimal
capital allocation, Estrella (2004) formulates the infinite-horizon stochastic optimiza-
tion problem in presence of costs. An optimization model of quality improvement
allocations that minimize costs is studied by Wang et al. (2013).

When both literature streams are viewed collectively, it appears that the application
of operations research approach to the capital allocation theory has not been given
the attention that it deserves. In our research, we try to bridge this research gap by
formulating a multiobjective capital allocation problem that draws on the theoretical
foundations of finance and applied operations research literature.

3 Principles and methods of capital allocation problem

Consider a financial conglomerate with n different lines of business (which can
include several international locations) with losses represented by random variables
Ly, L, ..., L, occurring at a fixed future date 7. We assume that any loss L; has
a finite mean i.e., E[L;] = u; < 400, i = 1,2, ...,n and denote its distribution
function P(L; < 1) by Fy,(I).

Given the aggregate loss L = >/, L; and a risk measure p such as the value-at-
risk (VaR) or expected shortfall (ES), we assume that the conglomerate has already
determined the overall risk capital K given by K = p(L) > 0. The principle of capital
allocation can then be described as allocating the risk capital K to various BLs such
that, if K; is the amount of capital allocated to the BL with potential loss L;, then it
satisfies the full allocation requirement given by

Zlq =K. )
i=l1

Erel et al. (2014) suggest that risk-free or low-risk businesses may get negative
capital allocations, since their marginal expansion improves the conglomerate’s credit
quality which frees up the risk capital.

There are many methods for obtaining the allocated risk capitals K1, K», ..., K.
One class of methods is based on the proportional allocation principle (Dhaene et al.
2003) which states that each capital K; is proportional to the risk measure of its
associated loss L; i.e.,

Ki=vyipL), i=12,...,n. )

The definition of the factor y; differentiates several methods of this class. One
popular approach is to define y; as

K

- i=12....n 3)
2 =1 P(Lj)

Vi =
which clearly satisfies the allocation requirement in Eq. 1.
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Another common method is the covariance allocation principle (Litterman 1996;
Overbeck 2000) which allocates the risk capital as follows

K .
K; = Var(L)Cov(Li, L), i=1,2,...,n, “4)

where Var(L) is the variance of the aggregate loss and Cov(L;, L) is the covariance
between the individual loss L; and aggregate loss L. Clearly, this method also satisfies
the full allocation requirement since the sum of the covariances is equal to the vari-
ance of the aggregate loss. Unlike in the proportional allocation principle, the use of
covariance allows the method to explicitly model the dependence structure of the ran-
dom losses where individual losses that are highly correlated with the aggregate loss
have higher allocated capital than those losses with lower correlations (for a detailed
discussion, please see McNeil et al. 2010).

The conditional tail expectation (CTE) allocation principle (Tasche 1999; Acerbi
and Tasche 2002) is another alternative method that also includes the dependence
structure of the random losses. As the name implies, it uses the CTE as risk measure
for setting the capital requirements. For a fixed probability level p € (0, 1), itallocates
a capital K; given by

i

=LE[L-|L>F_l(p)] i=1,2,....n (5)
CTE,[L] ' L ’ T

where F; Uis the quantile function and the CTE of the aggregate loss L is defined as
the average of the top 1 — p percent losses i.e.,

CTE,[L] = E[L|L > FL_I(p)]. (6)

The Euler or (also termed) gradient allocation principle is another method that cal-
culates the per-unit allocation based on the gradient of a positive-homogeneous risk
measure (Buch and Dorfleitner 2008). Using appropriate risk measures, this method
can obtain many allocation principles including the covariance, semicovariance and
Expected Shortfall allocation principles. Buch and Dorfleitner (2008) investigate var-
ious conditions under which these three principles are non-coherent in the general
context of risk measures (Artzner et al. 1999) and capital allocations (Denault 2001).

In Laeven and Goovaerts (2004), a capital allocation approach that integrates the
cost of economic capital and the cost of positive risk is proposed. The positive risk,
also called risk residual, is the risk that remains after allocating the capital. This model
first obtains the optimal total economic capital X* via a mathematical model given by

min 7 [(L=X)1]+ (e —rp)X, (7)

where X denotes the solution vector (K, K», ..., K,), r. is the cost of capital (or
cost of capital charged by the shareholders), ¢ (< r.) is the risk-free interest rate,
and 7[-] is a valuation measure for the risk residual. Note that the first term of Eq. 7
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reflects the risk residual while the second term represents the cost of capital allocation.
Next, the cost of economic capital due to each of the BLs is similarly calculated using
Eq. 7. Finally, each of the various BLs is then allocated an amount equal to the fraction
w[(L— X*)H/Z'}Zl w[(L;— X;f)+] of the risk residual cost of the BL w [(L; — X7) 4]
plus the capital cost (r, — )X}

Most recently, a unifying framework that generalizes several allocation approaches
has been developed in Dhaene et al. (2012). This framework is a mathematical pro-
gramming method based on the minimization of the deviations of the BLs’ losses
from their respective allocated capitals. It is characterized by its flexibility which
allows the derivations, interpretations and extensions of other existing methods. This
framework can be seen as a general form of the allocation models presented in Laeven
and Goovaerts (2004).

Mathematically, the framework of optimal allocation problem determines the allo-
cated capitals K1, K», ..., K, by solving the following optimization model

. Li —K; . .
Kl’llgm %, Z v, E |:e,-D (U—l)] subject to z Ki =K, (8)

..... i=1 i=1

where the v; and e; are non-negative real numbers and non-negative random variables,
respectively, such that ZLI v; = 1 and E[e;] = 1, and D is a non-negative function.

The parameters v; normalize the deviations of losses from allocated capitals in the
function D to make the deviations more comparable across BLs. Moreover, they are
also used as weights to indicate the relative importance of the different BLs. Likewise,
the parameters e; are used as weights for the function D. For example, one can define
e; as a non-negative and non-decreasing function of loss L;, thus assigning larger
weights to deviations that correspond to the larger losses L;. Several possible forms
of e; are described in Dhaene et al. (2012).

The function D evaluates the difference between the losses L; and the allo-

cated capitals K;. One example of this function is the quadratic deviation given by
. 2
D() = % It can be shown that the optimal allocated capitals under the quadratic

1
deviation are

n
K; =EleiLil+vi | K=Y Ele;L;1| i=12....n. )
j=1

If one defines the parameter v; by

Ele; L;]

L i=1,2,....n, 10
> Ele;L] " (4

v =

then the optimal allocated capitals can be expressed as

Ele; L;]

Ki= Kt
© XL ElejLy]

=1,2,...,n, (11)
which follows the proportional allocation principle.
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4 Multiobjective model

Our multiobjective optimization model to capital allocation problem (MOMCAP)
combines the cost of allocation, which is derived from the risk residual defined in
Laeven and Goovaerts (2004), to the general framework of capital allocation opti-
mization model described in Dhaene et al. (2012). The former study also discusses
the economic motivation for including costs in the optimal capital allocation problem.
Our model also closely resembles the lot sizing problem from the resource allocation
models studied in production economics (Patriksson 2008). In particular, MOMCAP
aims to simultaneously minimize the total cost of allocation C and the squared devia-
tion D between allocated capitals and losses. We define the cost of allocation of capital
¢; as the cost per unit amount of capital allocated to BL i. The total cost of allocation
of capital is then given by

CZZC,’K,’. (12)

To fully describe our model, we denote as X the solution vector (K1, K», ..., K,).
Since both C and D are functions of the solution vector X, we can express them as
C(X) and D(X). We also abbreviate as S the set of all feasible solutions. Finally, the
general form of MOMCAP can be described as follows

min (f1(X), f2(X)) suchthatX € §, (13)

where f1(X) = D(X) and f>(X) = C(X).

It can easily be verified that the two objectives of MOMCAP are conflicting. For
instance, the optimal solution of squared deviation D is given by Eq. 9 while the
optimal solution for cost of allocation C is

K =K, wherei = argmin(ci,ca, ..., Cp). (14)

Clearly, the optimal solution in one objective does not translate to an optimal solu-
tion in the other objective. In general, solving multiobjective problems like MOMCAP
means finding the set of nondominated solutions or the so-called Pareto-optimal set.

For our MOMCAP model, we seek the Pareto optimal set by solving the opti-
mization problem (13) via an aggregation approach i.e., we solve the corresponding
single-objective function given by

1 A solution Z € § is said to dominate a solution ¥ € § if fi(Z) < fi(Y)foralli = 1,2,...,m and
fj(Z) < f;(Y) for at least one index 1 < j < m. Moreover, Z is said to be not dominated by set §
if there is no solution ¥ € § that dominates Z. In this case, Z is called nondominated or Pareto-optimal
solutionsyThercollectionsofrallsPareto=optimalysolutions is called the Pareto-optimal set and the graphical
representation of these solutions in terms of their objective function values is called the efficient frontier.
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lmin [(1 =) x fi(X) + (@) x (X)) 0s)

subject to >2_; K; = K and @ = [0, 1].

By varying the values of «, we can generate the efficient frontier of our model.
We obtain the analytical derivation of the Pareto optimal solutions by writing our
optimization problem as follows:

K:—L:)2
min(f1, f2) = (1 — @) Z?:l v;E [ej%} + (o) 27:1 c;iK;

; (16)
subjectto >7_; K;j = K and o« = [0, 1].

4.1 Analytical solution based on geometric arguments

In what follows, we present an analytical solution to the MOMCAP problem. Again,
the optimal solutions when @ = O and o = 1 are already given in Eqs. 9 and 14, respec-
tively. Following Dhaene et al. (2012), Zaks (2013) and Zaks and Tsanakas (2014)
our solution when O < o < 1 is based on the transformation of the objective function
to a form where only decision variables are left and we use geometric arguments to
obtain the final solution. We set

1—a)\'?
rj = ( ) (17)
vj
and begin by transforming fi,
" K;—L;)’
f1=(1—a)zvjE[ej%} (18)
j=1 J
=1
:(1—a)Z;E[ejKJZ-—ZejKij+e,~L§] (19)
j=1"
n
=>"(rjK))? — 2 2K;E(e;L)) + rE (ejLﬁ). (20)
j=1

It can be rewritten as:

n
fi= DK )P = 22K Eles L) + r7E (e 12)
j=1

+r2E (e?L?) —r3E (e?L?) Q1)

+r7E(e;L%) — r’E (eﬁLﬁ) . 22)




Multiobjective optimization of credit capital 809

Since the last two terms in the equation above do not include the decision variable
K ; then dropping them will give the same optimal solution, thus f; can be expressed

as:
n

fl =Z[ijj—rjE(eij)]2. (23)

j=1

Moreover, if we let s; = E [e i L j] rjand d; = ac; then a simple transformation
leads to the following formulation of MOMCAP:

n

n
Kl,,?;??,,{n Z(ijj—Sj)er;,dej . (24)

Note that

n n

n
z (ijj — Sj)2 + Zdej = Z [(ijj)2 — 2ijij +S]2 +dej] . (25
j=1 j=1 j=1

By using basic algebraic transformations and removing terms independent of deci-
sion variables K1, K», ..., K,, we obtain the following form of the problem:

..........

n 2 n
d; 2
min E K — s, — =L = min E K, —T; ,
Ki.Kp Ky | = (rj J (sf 2rj)) K1 Koo Ky | 5 (riKj = T;)

Jj=1 Jj=1
(26)

where T; = s5; — 2{17’] LetUj =r;Kjand R; = % We introduce a vector notation of
MOMCAP, where U = (Uy, ... Up), T = (T1,.... T and R = (... ). we
rewrite Eq. 26 as:

min ||U — T|)?

U,T (27)

subjectto (U, R) = K.

The geometric solution to the optimization problem (27), which is similar to finding
the point on the hyperplane defined by the constraint (U, R) = K closest to the point
T, is given by:

K — (T,R)

Solving for K;, we obtain the optimal solution

(29)
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After expanding T and R, the optimal solution of MOMCAP is given by:

n n
Vi
Ki* =E(e; L;) + v; K—j_EIE(eij) +m j_ElUjCj —c|. (30

Note that for special case @ = 0, K = E(e; L;) +v; [K — Z'}zl IE(eij)] which
isequal to Eq. 9. Moreover, the last term in Eq. 30 expresses the difference between the
average cost of allocation Z;le v;c; and the cost of allocation ¢;. Thus, BLs gain/loss
additional amount of allocated capital when their cost of allocation is lower/higher
than the average.

4.2 Analytical solution based on Lagrange multipliers

Alternatively, we propose a solution based on Lagrange multipliers. We define the
Lagrange function as:

- S (K;— L)’ S S
L(K,x):(l—a)Zvj]E ej————— +0€ZCJ'K]'—)\, sz_K R
=1 =1

2
=1 vj
€1y
which yields the following system of equations
oL 2(1 — ) -
3_Ki = U—ZE (e,'K,' —eiL,')—l-O{Ci —x=0 (32)
IL c
—=—>» K;+K=0. 33
o Z i+ (33)
j=1
They can be rewritten as
2(l —« -
o) " )[Ki —E(eiLi)] +aci —%=0 (34)
l n
> K =K. (35)
j=1
Equation 34 yields
v; -

From Egs. 35 and 36 we get

(37
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First, we solve for \

n

Z 0w —acj]+ZlE(]ij)- (38)

j=1 =1

Note that Z?zl v; = 1, which yields

r=2(1—a) K—ZE(eij) +azvjcj. (39)
— -

Now, we solve for K;. From Eqs. 36 and 39 we obtain the optimal solution:

K =E(eiLi)+v | K=Y E(e;L;) |+ T a)z ot 2(1—a) 0
j=1

Finally, the optimal solution can be rewritten as:
n Vi n
l
K =E(e;Li)+vi | K— _E_I]E(eij) TR 12—1 vjcj—ci |, (4D

which is identical to Eq. 30.

5 Results of numerical simulations
5.1 Data

In March 2013 the Federal Reserve Board published the results of the Dodd—Frank
Act Stress Test 2013: Supervisory Stress Test Methodology and Results (FED 2013).
The Federal Reserve expects large, complex bank holding companies (BHCs) to hold
sufficient capital to continue lending to support real economic activity, even under
adverse economic conditions. In total 18 BHCs have been asked to provide input
data through a series of forms. The report provides an overview of the analytical
framework and methods used to generate the projections of loan losses for each of the
18 BHCs. The Federal Reserve’s projections depict possible results under hypothetical,
severely adverse conditions. For this study, we selected two sufficiently complex and
heterogeneous financial conglomerates to allow a meaningful comparative analysis.
We chose American Express (AE) and Bank of America (BofA) as representative firms
for our analysis. We parametrized our simulation setup with the corresponding loss
data as in the FED report by BL. The following BLs are captured by the FED report:
first-lien mortgages Junlor liens and HELOCs, commercial and industrial, commercial

eal ¢ er and other loans. We assumed that the stress
e stressed scenarios, and that the values

Sl zyl_llsl
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reported in the FED report are the mean values of a Gaussian distribution. Naturally,
a different than normal distribution of losses around the mean value would lead to
different results, however, only for the purpose of our presentation the assumption is
justified. In Table 1 we present the list of parameters.

Note that BofA (BL1-BL7) has more BLs than AE (BL3, BL5, BL7) which
expresses the characteristics and complexity of their respective business models. We
estimate the cost of capital of the conglomerate from the Bloomberg database and use
WACC—weighted average cost of capital as a proxy of the average cost of raising cap-
ital in the market for a conglomerate. As of October 2012, the values of WACC were
equal to 6.8 and 3.4 % for AE and BofA, respectively. We distribute the cost of capital
to different BLs based on the portfolio loss rates (following the FED report). By doing
so, we characterize different costs of capital that a firm would have needed to raise
for each of the BLs. As each of the BLs can be ranked by its level of risk, we assume
that the realized loss rates provide a good proxy for the estimation of such costs by
the management of the bank. The distribution of costs to various BLs is presented in
Table 2. We set negative losses (gains) to zero and the confidence level for VaR at 95 %.
Moreover, each BL i is assumed to have equal weight v; and a deviation e¢; equal to 1.
The allocated capitals are restricted to non-negative amounts to simplify the analysis.

5.2 Results

We remark that the two objectives are conflicting as described in Sect. 4. The results of
different allocation methods are presented in Table 3 for BofA and in Table 4 for AE.
For each of the methods presented in Sect. 3 we look at the cost and deviation (note
that in the discussion of results “VaR” corresponds to the proportional allocation,

Table 1 List of parameters

Parameter Definition

ci Cost of allocation of capital by BL i

C Total cost of allocation of capital of the conglomerate

K Total capital of the conglomerate

K; Allocated capital by BL i

v; Weight of BL i

e; Weight of deviation for BL i
alocation of aptal o ittt B AE__ BoiA
BLs First-lien mortgages, domestic (BL1) 0 0.11C/100

Junior liens and HELOCs, domestic (BL2) 0 0.19C/100

Commercial and industrial (BL3) 0.36C/100 0.10C/100

Commercial real estate, domestic (BL4) 0 0.17C/100

Credit cards (BL5) 0.46C/100 0.32C/100

Other consumer (BL6) 0 0.08C/100

Other loans (BL7) 0.17C/100 0.03C/100
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Table 3 Optimal capital allocations using different methods for BofA

Allocation method ~ Cost Deviation BL1 BL2 BL3 BL4 BL5 BL6 BL7  Total capital

VaR 0.14 17479 591 3.86 3.54 218 593 162 1.05 24.10
CTE 0.14 17570  5.81 3.84 354 224 582 170 1.14 24.10
Covariance 0.12  239.10 343 3.89 333 329 347 354 3.15 2410

Dhaene et al. (2012) 0.15  172.69 640 3.94 3.57 195 640 126 0.58 24.10
MOMCAP « =0 0.15 172.69 640 394 357 195 640 126 0.58 24.10
MOMCAP«a =0.5 0.06 55525 254 0.00 8.80 0.00 0.00 569 7.07 24.10
MOMCAP « =1 0.02 3564.10 0.00 0.00 0.00 0.00 0.00 0.00 24.10 24.10

Table 4 Optimal capital allocations using different methods for AE

Allocation method Cost Deviation BL3 BL5 BL7 Total capital
VaR 0.32 16.73 7.28 2.46 5.66 15.40
CTE 0.33 17.51 7.16 2.64 5.60 15.40
Covariance 0.35 48.93 5.28 5.10 5.02 15.40
Dhaene et al. (2012) 0.32 15.60 7.73 1.87 5.80 15.40
MOMCAP o« =0 0.32 15.60 7.73 1.87 5.80 15.40
MOMCAP o = 0.5 0.24 51.14 4.81 0.00 10.59 15.40
MOMCAP o =1 0.18 146.44 0.00 0.00 15.40 15.40

“Covariance” corresponds to the covariance allocation, “CTE” corresponds to the
conditional tail expectation allocation). The results show that in all cases when the
cost is not considered, the minimum deviation criterion leads to non-optimal costs.
When using our MOMCAP model, the results vary with the chosen level of «. When
a = 0 the results of our simulations are aligned with the analytical solution given in
Eq. 9. With the increasing levels of «, the costs decrease while deviation increases
and the capital is allocated to the most cost efficient BLs. Finally, when o = 1, the
cost is minimized and the total capital is allocated to the least costly BL (BL7—both
for BofA and AE). Naturally, this is an extreme case, and managers need to make an
informed decision on the chosen level of « by taking into account the complexity of the
respective business model and the firm’s risk appetite. In practice, the business plans
delivered every year by the managers of the corresponding BLs can serve as sources of
information used by the decision maker (DM). This information serves as the basis for
expressing the DM’s preference about the chosen level of «. Since the optimal capital
allocation comes at a cost, the deviation is higher when the cost is low (and vice versa,
the higher the cost, the lower the deviation). To facilitate the discussion, we depict
the efficient frontiers and the results of the simulations in Figs. 1 and 2. These figures
show scatterplots of the values of the two objectives given 10,000 feasible solutions
generated randomly for the two data sets described in Sect. 5.1. The results suggest
that the points lying at the efficient frontier depict the optimum allocation of capital.
We see that the solutions of VaR, CTE and Covariance methods are non-optimal since
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they do not lie along the efficient frontier. In particular, the Covariance method clearly
underperforms as compared to other methods. One can also see from these graphs that
the smaller values of fi do not translate to smaller values of f;, and vice versa. This
behavior can also be observed in the portfolio optimization problem where there are
many Pareto optimal solutions.

In Figs. 3 and 4 we show the contribution of each BL to the total allocated capital
for the increasing values of «. Interestingly, for higher values of «, the BL with lowest
ital. This observation can be attributed to the
inimization criterion. As the values of o
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become lower, the less pronounced is the amount of capital allocated to this BL since
the total capital is split across all other BLs.

We have shown through simulation that the optimal solution for the deviation min-
imization problem is true when we do not consider the costs of allocating capital. In
case, when the costs are included in the model, the implications are not so straight-
forward anymore. We have two conflicting objectives leading to the situation where

i : i solutions (resulting in a higher deviation
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6 Conclusions and future research

In this article we extended the optimum capital allocation problem proposed by Dhaene
et al. (2012) to a multiobjective optimization problem by incorporating the cost of
capital. Our contribution is at least threefold. First, we separate the two optimization
objectives in order to decouple the conflicting assumptions of minimizing the cost of
capital and the distance of loss and required capital. Second, we solve the two-stage
optimization problem by simulating possible scenarios and drawing different maps
of the outcomes in the parameter space. We also provide an analytical solution of
MOMCAP by using geometric arguments and propose an alternative solution based
on Lagrange multipliers. Third, we empirically validate our model through a real-world
application of our method. We highlight the differences in optimal capital allocations
by comparing the existing capital allocation methods with our mew method for two
heterogeneous lending firms based on data from public data sources. Moreover, we
develop a theoretical underpinning by linking the optimal capital allocation frontier
and the efficient frontier of the Markowitz’s modern portfolio theory. In practice, our
methodology provides a sophisticated decision making tool which is easy to implement
and increases the transparency of risk capital allocation in financial institutions. The
use of this model can help the DM to decide on the optimal capital allocation based
on the given cost of capital.

However, we are aware of the limitations of this study. Our choice of parameters has
only partially been validated with real data. Further research should focus on obtaining
and simulating a full distribution of credit losses and incorporating non-trivial corre-
lation structures among the various BLs. Consideration of other risk types would also
be an interesting research path. Given the rapidly changing business environment of
the international financial industry sector, further development of our multiobjective
optimal capital allocation method is thus of interest for academics and practitioners
alike.
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